An efficient stereoselective and stereodivergent synthesis of $(2 R, 3 R)$ - and $(2 R, 3 S)$-3-hydroxypipecolic acids

Angélique Jourdant and Jieping Zhu*
Institut de Chimie des Substances Naturelles, CNRS, 91198 Gif-sur-Yvette, France

Received 5 May 2000; accepted 13 July 2000

Abstract

Asymmetric syntheses of $(2 R, 3 R)$ and $(2 R, 3 S)$-3-hydroxypipecolic acids are reported featuring a key diastereoselective addition of Büchi's Grignard reagent to the chiral serinal l-5. Based on conformational analysis, a stereocontrolled reduction of piperidin-3-one (15) to cis 2,3-disubstituted piperidine (16) is also described. © 2000 Elsevier Science Ltd. All rights reserved.

Chiral, non-racemic piperidines are common structural units found in many biologically and medicinally important natural and non-natural products. It is thus not surprising that many new asymmetric synthetic methods have been developed. ${ }^{1}$ Among them, chiral auxiliary based approaches developed by the groups of Husson, ${ }^{2}$ Meyers, ${ }^{3}$ and Comins, ${ }^{4}$ respectively, are notable examples. Interestingly, the synthesis of 3-hydroxy-piperidine derivatives, ${ }^{5}$ such as, 3-hydroxypipecolic acid (1 and 2), ${ }^{6}\left(+\right.$)-prosophylline (3), ${ }^{7}$ Febrifugine (4) ${ }^{8}$ etc. (Fig. 1) are less developed and their asymmetric syntheses have been accomplished only very recently. Our group ${ }^{9}$ and Pedrosa et al. ${ }^{10}$ have recently synthesized a new serinal: L-(N, N-dibenzylamino)serine (TBDMS) aldehyde (5). The predictable and high diastereofacial selectivity of nucleophilic addition to the aldehyde function constitutes the main advantage of this synthon. ${ }^{11}$ As part of a program directed at synthesizing alkaloids using the enantiopure L-5 and D-5 as chiral building blocks, we report in this letter an efficient synthesis of both $(2 R, 3 R)$ and ($2 R, 3 S$)-3-hydroxypipecolic acids (1 and 2) from L-5.

1

2

3

4

L-5

Figure 1.

[^0]Swern oxidation of serinol L-6 gave the aldehyde l-5 which, without purification, was reacted with Büchi's Grignard reagent ${ }^{12}$ to give the amino diol $\mathbf{8}$ in excellent yield and diastereoselectivity (anti:syn $=15: 1$). The major stereomer was assumed to be anti according to Felkin-Anh model ${ }^{13}$ and this is corroborated by the obtention of final compound. Catalytic hydrogenation $(3 \mathrm{~N} \mathrm{HCl}$, ${ }^{t} \mathrm{BuOH}-\mathrm{THF}, \mathrm{Pd} / \mathrm{C}, \mathrm{H}_{2}$) followed by N-protection as tert-butoxycarbamate gave piperidine $\mathbf{9}$ in 80% overall yield. A series of four reactions, namely, hydrogenolysis of the N-benzyl function, hydrolysis of the acetal, imine formation and reduction of the imine took place under these hydrogenolysis conditions. It was found that the reaction consistently gave high yields of the desired compound 9 when the hydrogenation was carried out in a mixture of ${ }^{t} \mathrm{BuOH}-\mathrm{THF}$ instead of MeOH . Selective oxidation of the primary alcohol under various conditions ${ }^{14}$ failed to give the desired β-hydroxy carbonyl compound. Consequently, a straightforward three-step sequence was applied to convert the diol into the primary alcohol 12. Jones' oxidation of $\mathbf{1 2}$ followed by simultaneous removal of MOM ether and N-Boc functions under acidic conditions gave then $(2 R, 3 R)$-3-hydroxypipecolic acid (1) ${ }^{15}$ whose physical and spectroscopic data are in full agreement with those reported in the literature (Scheme 1).

Alternatively, the secondary hydroxyl group of compound $\mathbf{8}$ was protected as its MOM ether immediately after its formation to give the fully protected amino diol 13. Hydrogenolysis of $\mathbf{1 3}$ in $\mathrm{MeOH}(3 \mathrm{~N} \mathrm{HCl}, 10 \% \mathrm{Pd} / \mathrm{C})$ gave directly the piperidine $\mathbf{1 4}$ as its hydrochloride salt in 50% yield (Scheme 2). Partial deprotection of TBDMS and MOM ethers under these acidic conditions were nevertheless unavoidable.

Scheme 1. Reagents and conditions: (a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}$; (b) 2-(2-bromethyl)-1,3-dioxolane (7), Mg , THF, 86% then 5; (c) (i) $\mathrm{H}_{2}, 10 \% \mathrm{Pd} / \mathrm{C}, 3 \mathrm{~N} \mathrm{HCl}, \mathrm{THF}:^{t} \mathrm{BuOH}(1: 1)$; (ii) $\mathrm{Boc}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}$, dioxane, 1 N NaOH , 80%; (d) TBDPSCl, DMF, imidazole; (e) MOMCl, Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 90%; (f) HF (48%), pyridine, THF, 85%; (g) $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, 2.67 \mathrm{M}$, acetone, $0^{\circ} \mathrm{C}$; (h) $6 \mathrm{~N} \mathrm{HCl}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 75 \%$

Scheme 2. Reagents and conditions: (a) MOMCl , Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 90 \%$; (b) $\mathrm{Pd} / \mathrm{C}, \mathrm{MeOH}, 3 \mathrm{~N} \mathrm{HCl}, 50 \%$

Analysis of ${ }^{1} \mathrm{H}$ NMR spectrum of piperidine 9 indicated that it adopted in solution a trans diaxial conformation exclusively as evidenced by the coupling constant $\left(J_{\mathrm{H} 2-\mathrm{H} 3}=1.5 \mathrm{~Hz}\right)$. Computational studies (Macromodel, version 5.5, force field MM2) also showed that the trans diaxial conformer was more stable than the trans diequatorial one. Such a conformational preference is understandable assuming the partial double bond character of the $C-N$ carbamate bond which causes the $\mathrm{A}^{1,3}$ strain in the trans diequatorial conformation. ${ }^{16}$ This conformational analysis led us to develop a synthesis of ($2 R, 3 S$)-3-hydroxypipecolic acid based on the assumption that reduction of ketone $\mathbf{1 5}$ might be highly stereoselective to give cis 2,3 -disubstituted piperidine 16. Indeed, reduction of ketone $\mathbf{1 5}$ with sodium borohydride afforded a single diastereomer whose ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra are in accord with the assigned configuration and are different from that of 10. Following the same route described for the synthesis of $\mathbf{1}$, compound $\mathbf{1 6}$ was converted to ($2 R, 3 S$)-3-hydroxypipecolic acid (2) in 52% overall yield (Scheme 3).

Scheme 3. Reagents and conditions: (a) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N}, 96 \%$; (b) $\mathrm{NaBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}$, 88%; (c) MOMCl, Hunig's base, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, 89%; (d) HF (48%), pyridine, THF, 75%; (e) $\mathrm{CrO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}, 2.67 \mathrm{M}$, acetone, $0^{\circ} \mathrm{C}$; (f) $6 \mathrm{~N} \mathrm{HCl}, 80^{\circ} \mathrm{C}, 2 \mathrm{~h}, 78 \%$

The high diastereoselectivity observed in the reduction of $\mathbf{1 5}$ can be rationalized on the basis of Felkin's torsional strain model which disfavors the equatorial attack of hydride. ${ }^{13,17}$ The presence of the N-Boc function in the six-membered ring should flatten the molecule and decrease the 1,3-diaxial steric interactions, further increasing the axial selectivity (Fig. 2).

axial attack

equatorial attack

Figure 2.

In summary, we have described a highly stereoselective and stereodivergent synthesis of both the $(2 R, 3 R)$ and ($2 R, 3 S$)-3-hydroxypipecolic acids from the common serinal ($\mathrm{L}-5$) with 39 and 29% overall yield, respectively. Since its antipode D-5 is easily available, the chemistry developed here can be applied to the synthesis of other two diasteromeric hydroxypipecolic acids.

Acknowledgements

A doctoral fellowship from MRES to A. Jourdant is gratefully acknowledged. We thank Dr. T. Laïb for a helpful discussion.

References

1. (a) Wang, C. J.; Wuonola, M. A. Org. Prep. \& Proced. Int. 1992, 24, 585-621; (b) Bailey, P. D.; Millwood, P. A.; Smith, P. O. J. Chem. Soc., Chem. Commun. 1998, 633-640.
2. Husson, H.-P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383-394, and references cited therein.
3. Meyers, A. I.; Brengel, G. P. J. Chem. Soc., Chem. Commun. 1997, 1-8.
4. Comins, D. L.; Libby, A. H.; Al-Awar, R. S.; Foti, C. J. J. Org. Chem. 1999, 64, 2184-2185.
5. (a) Dockner, M.; Sasaki, N. A.; Riche, C.; Potier, P. Liebigs Ann/Recueil 1997, 1267-1272; (b) Calvez, O.; Chiaroni, A.; Langlois, N. Tetrahedron Lett. 1998, 39, 9447-9450; (c) Shirai, M.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1999, 39, 5331-5332; (d) Guilloteau-Bertin, B.; Compère, D.; Gil, L.; Marazano, C.; Das, B. C. Eur. J. Org. Chem. 2000, 1391-1399.
6. (a) Roemmele, R. C.; Rapoport, H. J. Org. Chem. 1989, 54, 1866-1875; (b) Greck, C.; Ferreira, F.; Genêt, J. P. Tetrahedron Lett. 1996, 37, 2031-2034; (c) Agami, C.; Couty, F.; Mathieu, H. Tetrahedron Lett. 1996, 37, 40014002; (d) Battistini, L.; Zanardi, F.; Rassu, G.; Spanu, P.; Pelosi, G.; Fava, G. G.; Ferrari, M. B.; Casiraghi, G. Tetrahedron: Asymmetry 1997, 8, 2957-2987; (e) Scott, J. D.; Tippie, T. N.; Williams, R. M. Tetrahedron Lett. 1998, 39, 3659-3662; (f) Horikawa, M.; Busch-Petersen, J.; Corey, E. J. Tetrahedron Lett. 1999, 40, 3843-3846.
7. (a) Saitoh, Y.; Moriyama, Y.; Hirota, H.; Takahashi, T.; Khuong-Huu, Q. Bull. Chem. Soc. Jpn. 1981, 54, 488492; (b) Ciufolini, M. A.; Hermann, C. W.; Whitmire, K. H.; Byrne, N. E. J. Am. Chem. Soc. 1989, 111, 34733475; (c) Yang, C. H.; Xu, Y. M.; Liao, L. X.; Zhou, W. S. Tetrahedron Lett. 1998, 39, 9227-9228; (d) Agami, C.; Couty, F.; Mathieu, H. Tetrahedron Lett. 1998, 39, 3505-3508; (e) Kadota, I.; Kawada, M.; Muramatsu, Y.; Yamamoto, Y. Tetrahedron Lett. 1997, 38, 7469-7440; (f) Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3592-3596; (g) Ojima, I.; Vidal, E. S. J. Org. Chem. 1998, 63, 7999-8003; (h) Koulocheri, S. D.; Haroutounian, S. A. Tetrahedron Lett. 1999, 40, 6869-6870; (i) Herdeis, C.; Telser, J. Eur. J. Org. Chem. 1999, 1407-1414.
8. (a) Kobayashi, S.; Ueno, M.; Suzuki, R.; Ishitani, H. Tetrahedron Lett. 1999, 40, 2175-2178; (b) Takeuchi, Y.; Hattori, M.; Abe, H.; Harayama, T. Synthesis 1999, 1814-1818.
9. (a) Laïb, T.; Chastanet, J.; Zhu, J. Tetrahedron Lett. 1997, 38, 1771-1772; (b) Laïb, T.; Chastanet, J.; Zhu, J. J. Org. Chem. 1998, 63, 1709-1713.
10. Andrés, J. M.; Pedrosa, R. Tetrahedron 1998, 54, 5607-5616.
11. (a) East, S. P.; Shao, F.; Williams, L.; Joullié, M. M. Tetrahedron 1998, 54, 13371-13390; (b) For a recent review on the chemistry of N, N-dibenzyl amino aldehyde, see: Reetz, M. T. Chem. Rev. 1999, 99, 1121-1162.
12. (a) Büchi, G.; Wüest, H. J. Org. Chem. 1969, 34, 1122-1123; (b) Sworin, M.; Neumann, W. L. Tetrahedron Lett. 1987, 28, 3217-3220.
13. (a) Chérest, M.; Felkin, H.; Prudent, N. Tetrahedron Lett. 1968, 2199-2204; (b) Chérest, M.; Felkin, H. Tetrahedron Lett. 1968, 2204-2208; (c) Anh, N. T.; Eisenstein, O. Nouv. J. Chim. 1977, 1, 61-70.
14. Davis, N. J.; Flitsch, S. Tetrahedron Lett. 1994, 34, 1181-1184; (b) Einhorn, J.; Einhorn, C.; Ratajczak, F.; Pierre, J. L. J. Org. Chem. 1996, 61, 7452-7454.
15. Compound 1: $[\alpha]_{\mathrm{D}}=14(c 0.4,10 \%$ aqueous HCl$)$, lit. ${ }^{6}[\alpha]_{\mathrm{D}}=14(c 0.4,10 \%$ aqueous HCl$) ; \mathrm{mp} 231^{\circ} \mathrm{C}$; IR (KBr) v 3404, 3051, 2983, $1742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{D}_{2} \mathrm{O}, 200 \mathrm{MHz}\right) \delta 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.91(\mathrm{~m}, 2 \mathrm{H}), 2.98$ (ddd, $J=10.4,8.7,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.27(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{ddd}, J=10.4,7.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 50.3 \mathrm{MHz}\right) \delta$ 20.1, 29.9, 44.1, 62.8, 67.6, 173.6; MS (CI) $m / z 146[\mathrm{M}+1]^{+}$.
16. Hoffman, R. W. Chem. Rev. 1989, 89, 1841-1860.
17. Wu, Y. D.; Tucker, J. A.; Houk, K. N. J. Am. Chem. Soc. 1991, 113, 5018-5027.

[^0]: * Corresponding author. Fax: 331690772 47; e-mail: zhu@icsn.cnrs-gif.fr

